Synthesis and Structural Studies of Subicosahedral Adjacent-Carbon Carboranes

Joseph W. Bausch,^{*,†} Derek J. Matoka,[‡] Patrick J. Carroll,[‡] and Larry G. Sneddon^{*,‡}

Contribution from the Departments of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, and Villanova University, Villanova, Pennsylvania 19085-1699

Received April 4, 1996. Revised Manuscript Received September 9, 1996[®]

Abstract: Synthesis and structural studies, employing combined NMR, X-ray crystallographic, and ab initio/IGLO/ NMR methods, of a variety of new subicosahedral carboranes with adjacent cage carbons are reported. Acetonitrileinduced cage degradation of arachno-4,5- $C_2B_7H_{12}^-$ gave nido-4,5- $C_2B_6H_9^-$ (1⁻) in nearly quantitative yield, which can then be protonated to give the neutral carborane $nido-4,5-C_2B_6H_{10}$ (1) in good yield. Both of these nido electroncount clusters are shown to have an arachno-type geometry, i.e. a six-membered open face. The *nido*-4,5- $C_2B_6H_{10}$ (1) hydroborated alkenes or alkynes which following deprotonation gave nido-7-R-4,5-C₂B₆H₈⁻ (2a⁻-c⁻) ions. Both *nido*-4,5- $C_2B_6H_9^-(1^-)$ and *nido*-4,5- $C_2B_6H_{10}(1)$ serve as useful precursors to other adjacent cage-carbon clusters. Thus, *nido*-4,5-C₂B₆H₉⁻ (1⁻) reacted with BH₃•THF to give *arachno*-5,6-C₂B₇H₁₂⁻ (3⁻) which a single-crystal X-ray diffraction study showed is the first carborane to adopt the $n-B_9H_{15}$ cage geometry. Thermal or chemical degradation of *nido*-4,5-C₂B₆H₁₀ (1) gave *closo*-2,3-C₂B₅H₇ (5) in good to moderate yields. The *nido*-4,5-C₂B₆H₉⁻ (1⁻) was also found prone to lose a cage boron as evidenced by its reactions with $(\eta - C_5H_5)Co(CO)I_2$ and $(\eta^6 - C_6Me_6)_2Ru_2Cl_4$ which gave $closo-3,1,2-(\eta-C_5H_5)CoC_2B_5H_7$ (6) and $closo-3,1,2-(\eta^6-C_6Me_6)RuC_2B_5H_7$ (7), respectively. NMR studies showed the *nido*-4,5-C₂B₆H₁₀ (1) was converted to *arachno*-4,5-C₂B₆H₁₁⁻ by reaction with LiEt₃BH, and an alkyl derivative, arachno-7-CH₃-4,5-C₂B₆H₁₀⁻ ($\mathbf{4}^{-}$), was formed by reacting MeLi with nido-4,5-C₂B₆H₉⁻ ($\mathbf{1}^{-}$) followed by protonation. The $closo-2,3-C_2B_5H_7$ (5) was also converted in high yields to the smaller nido carborane, *nido*-2,3-C₂B₄H₈, via reaction with TMEDA/H₂O, and to *nido*-3,4-C₂B₅H₈⁻ ($\mathbf{8}^{-}$) by reaction with LiEt₃BH.

Introduction

The small carboranes (subicosahedra) were first synthesized in the early 1960s by high temperature cage growth reactions involving boranes and acetylenes.¹ Because of the lower stability of adjacent-carbon carboranes relative to isomerization to their non-adjacent isomers, the high temperature reactions yielded predominantly non-adjacent carbon products. Likewise, the high temperature reactions typically gave low yields and complex mixtures of products that then required extensive purification. Gas-phase methods for small carborane synthesis are now giving way to solution based procedures that, because of their milder conditions, generally have much higher yields, selectivities, and easier purification, allowing the isolation of kinetic rather than thermodynamic products.² In this paper we report the synthesis and structural studies of a variety of new subicosahedral adjacent-carbon carboranes via selective cage degradation and insertion reactions.

Experimental Section

All manipulations were carried out using standard high vacuum or inert-atmosphere techniques as described by Shriver.³

(2) Štíbr, B.; Plešek, J.; Jelínek, T.; Baše, K.; Janoušek, Z.; Heřmánek, S. *Boron Chemistry*; Heřmánek, S., Ed.; World Scientific Publishing Co. PTE, Ltd.: Singapore, 1987; pp 175–206 and references therein.

Materials. THF, pentane, hexanes, and benzene were dried over Na/benzophenone and freshly distilled before use. Acetonitrile, dried over CaH₂, then P₂O₅, and methylene chloride, dried over CaH₂, were distilled before use. Acidification of 1,8-bis(dimethylamino)naphthalene (Proton Sponge) with a 1 M Et₂O solution of HCl was used to generate the hydrochloride salt. The *arachno*-4,5-C₂B₇H₁₃,⁴ (η -C₅H₅)Co(CO)I₂,⁵ and (η ⁶-C₆Me₆)₂Ru₂Cl₄⁶ were prepared according to literature methods. All other materials were obtained from Aldrich and used as received.

Physical Measurements. ¹H NMR at 200 or 500 MHz, ¹¹B NMR at 64.2 or 160.5 MHz, and ¹³C NMR at 50.3 or 125.7 MHz were obtained on Bruker AF-200 or Bruker AM-500 spectrometers. All ¹¹B chemical shifts are referenced to BF₃•O(C_2H_5)₂ (0.0 ppm) with a negative sign indicating an upfield shift. All ¹H and ¹³C chemical shifts were measured relative to internal residual protons or carbons from the lock solvents and then referenced to Me₄Si (0.0 ppm). Infrared spectra were obtained on a Perkin-Elmer 1430 spectrophotometer and can be found in Supporting Information.

K⁺*nido*-4,5-**C**₂**B**₆**H**₉⁻ (1⁻). A 100-mL three-neck round-bottom flask equipped with a vacuum stopcock, septum, sidearm addition-funnel, and stirbar was charged with 1.50 g (13.3 mmol) of freshly prepared *arachno*-4,5-**C**₂**B**₇**H**₁₃ under a N₂ atmosphere. Following the *in vacuo* addition of THF (~50 mL), an excess of KH was slowly added via the sidearm at -50 °C until H₂ evolution had ceased. The K⁺*arachno*-

[†] Villanova University.

[‡] University of Pennsylvania.

 [®] Abstract published in Advance ACS Abstracts, November 1, 1996.
 ⁽¹⁾ See the following, and references therein: (a) Williams, R. E. In Progress in Boron Chemistry; Brotherton, R. J., Steinberg, H., Eds.; Pergamon Press: Oxford, 1970; Vol. II, pp 37–118. (b) Grimes, R. N. Carboranes; Academic: New York, 1970. (c) Onak, T. In Boron Hydride Chemistry; Muetterties, E. L., Ed.; Academic: New York, 1973; pp 349–382. (d) Onak, T. In Comprehensive Organometallic Chemistry; Wilkinson, G., Stone, F. G. A., Abel, E., Eds; Pergamon: Oxford, 1982; Chapter 5.4, pp 411–458.

⁽³⁾ Shriver, D. F.; Drezdzon, M. A. Manipulation of Air Sensitive Compounds, 2nd ed.; Wiley: New York, 1986.

^{(4) (}a) Heřmánek, S.; Jelínek, T.; Plešek, J.; Štíbr, B.; Fusek, J. J. Chem. Soc., Chem. Commun. 1987, 927–928. (b) Štíbr, B.; Heřmánek, S.; Plešek, J. Inorg. Synth. 1983, 22, 237–239.

⁽⁵⁾ King, R. B. Inorg. Chem. 1966, 5, 82-87.

⁽⁶⁾ Bennett, M. A.; Huang, T.-N.; Matheson, T. W.; Smith, K. A. *Inorg. Synth.* **1982**, *21*, 74–76.

⁽⁷⁾ Wrackmeyer, B.; Nöth, H. Chem. Ber. 1976, 109, 3480-3485.

⁽⁸⁾ Jelínek, T.; Štíbr, B.; Heřmánek, S.; Plešek, J. J. Chem. Soc., Chem. Commun. 1989, 804–805.

⁽⁹⁾ Beck, J. S.; Quintana, W.; Sneddon, L. G. Organometallics **1988**, 7, 1015–1016.

4,5- $C_2B_7H_{12}^{-1}$ solution was brought to room temperature and filtered, and the filtrate was transferred to a 250-mL two-neck round-bottom flask equipped with a stirbar, vacuum stopcock, and septum. Following vacuum transfer of CH₃CN (~50 mL), the vacuum stopcock was replaced with a condenser and the solution refluxed under a N₂ atmosphere. According to ¹¹B NMR spectroscopy, the reaction was complete within 24–36 h. Any insoluble material, if formed, was removed by filtration. The volatiles were vacuum evaporated leaving K⁺*nido*-4,5-C₂B₆H₉⁻ (1⁻) as a yellow solid, which according to NMR was contaminated with *N*,*N*,*N*-Et₃B₃N₃H₃ (δ ¹¹B 33.1 ppm).⁷ Washing the solid with two 50-mL portions of benzene afforded 1.76 g (12.8 mmol, 96.6%) of K⁺*nido*-4,5-C₂B₆H₉⁻ (1⁻) as a pale yellow, slightly air-sensitive solid.

The Bu₄N⁺ salt of *nido*-4,5-C₂B₆H₉⁻ (1⁻) was prepared by addition of a THF solution of (*n*-Bu)₄NBr to a THF solution of K⁺*nido*-4,5-C₂B₆H₉⁻ (1⁻). This mixture was then stirred at room temperature, KBr was removed by filtration, and toluene was added to the solution until cloudiness appeared. The solution was cooled at 0 °C to obtain crystals suitable for crystallographic studies. For Bu₄N⁺*nido*-4,5-C₂B₆H₉⁻ (Bu₄N⁺1⁻): mp 92–93 °C; elemental analyses for Bu₄N⁺1⁻ gave larger than normal deviations (Anal. Calcd: C, 63.51; H, 13.32, N, 4.11. Found: C, 59.73; H, 12.75; N, 4.12) but the structure of Bu₄N⁺1⁻ was determined crystallographically (Supporting Information Tables S2– S7), and exact mass measurements of the protonated form (1, see below) are consistent with the proposed formula.

nido-4,5-C₂B₆H₁₀ (1). A 250-mL round-bottom flask fitted with a vacuum stopcock and stirbar was charged with 1.19 g (8.7 mmol) of K⁺*nido*-4,5-C₂B₆H₉⁻ (1⁻) under a N₂ atmosphere. Pentane (~35 mL) was added by vacuum distillation. The pentane suspension of K⁺*nido*-4,5-C₂B₆H₉⁻ (1⁻) was brought to -50 °C, and an excess of HCl gas was expanded into the vacuum line and allowed to react with the solution for ~2 h. When the HCl addition appeared complete, the solution was vacuum fractionated through a series of -20, -78, and -196 °C traps. The *nido*-4,5-C₂B₆H₁₀ (1) condensed in the -78 °C trap as an air- and temperature-sensitive, white crystalline solid in an optimized yield of 0.601 g (6.17 mmol, 70.0%). For *nido*-4,5-C₂B₆H₁₀ (1): mp \approx -50 °C; exact mass calcd for ¹²C₂¹¹B₆⁻¹H₁₀ 100.1341, found 100.1349.

PSH⁺nido-7-(R)-4,5-C₂B₆H₈⁻ (2a⁻-c⁻). In a typical reaction, a one-neck vacuum flask fitted with a stirbar was charged with ~2 mmol of nido-4,5-C₂B₆H₁₀ (1) and an excess of phenyl acetylene, 2-butyne, or 1-hexene, respectively. The reaction was stirred until completion, then 1.2 equiv of Proton Sponge was added. The precipitated salt was filtered, then washed and/or recrystallized. The yields were as follows: PSH⁺*nido*-7-(*trans*-2-phenylethenyl)-4,5- $C_2B_6H_8^-$ (2a⁻) (83.2%), PSH⁺nido-7-(cis-2-but-2-enyl)-4,5-C₂B₆H₈⁻ (2b⁻) (77.5%), PSH⁺nido-7-(*n*-hexyl)-4,5-C₂B₆H₈⁻ (2c⁻) (41.3%). Details are given in the Supporting Information. To establish the composition of 2a⁻, in a separate reaction, after the formation of 2a, nido-7-(trans-2-phenylethenyl)-4,5-C₂B₆H₉, was observed, the volatiles were then evaporated in vacuo and the remaining oily material dissolved in CH2Cl2. Exact mass measurements on 2a confirm its composition: exact mass calcd for 2a, ¹²C₁₀¹¹B₆¹H₁₆ 202.1810, found 202.1831. Furthermore, the similarity of the spectroscopic data of $2a^{-}$ with that of the X-ray characterized butenyl analog $2b^-$ (below) provides additional structural confirmation. In a separate experiment carried out in a 5-mm NMR tube equipped with a Teflon stopcock, *nido*-7-(octyl)-4,5- $C_2B_6H_9$ (2d) carboranes were generated by reaction of ~0.1 mmol of nido-4,5- $C_2B_6H_{10}$ (1) and ~0.7 mL of octenes (a mixture of 1- and 2-octenes) at 60 °C for 1 h. 11B NMR showed only the formation of nido-7-(octyl)-4,5-C₂B₆H₉ (2d) carboranes.

arachno-**5**,**6**-**C**₂**B**₇**H**₁₂⁻ (**3**⁻). A solution of BH₃·THF (1 mL of a 1.0 M THF) was slowly added via syringe to 0.12 g (0.88 mmol) of K⁺*nido*-4,5-C₂B₆H₉⁻ (**1**⁻) dissolved in ~20 mL of THF at 0 °C. After warming to room temperature, the volatiles were removed to give 0.13 g (0.86 mmol, 97.7%) of K⁺*arachno*-5,6-C₂B₇H₁₂⁻ (**3**⁻) as a slightly air-sensitive, pale yellow solid.

The PSH⁺*arachno*-5,6-C₂B₇H₁₂⁻ salt (PSH⁺**3**⁻) was prepared by addition of ~10 mL of a CH₂Cl₂ solution of PSH⁺Cl⁻ (0.22 g, 0.88 mmol) to a ~10 mL THF solution of K⁺*arachno*-5,6-C₂B₇H₁₂⁻ (**3**⁻) (0.12 g, 0.79 mmol), followed by ~10 mL of Et₂O. Filtration removed the KCl, and addition of heptane then precipitated the PSH⁺**3**⁻. The

structure of PSH+ 3^- was established crystallographically with suitable single crystals obtained by cooling a CH₂Cl₂/Et₂O/heptane solution of PSH+ 3^- at -25 °C.

NMR Study of Reaction of 1 with LiEt₃BH. A 25-mL two-neck round-bottom flask equipped with a stirbar, vacuum stopcock, and rubber septum was attached to the vacuum line and 0.15 g (1.52 mmol) of *nido*-4,5-C₂B₆H₁₀ (1) followed by ~10 mL of CH₂Cl₂ were vacuum transferred into the flask. The flask was maintained at -30 °C, and under nitrogen, ~1 equiv (1.6 mL) of a 1.0 M THF solution of LiEt₃BH was added via syringe. When brought to room temperature, a ¹¹B NMR spectrum (see Supporting Information) of the solution showed the *arachno*-4,5-C₂B₆H₁₁⁻⁸ (~60%) and *nido*-4,5-C₂B₆H₉⁻ (1⁻) (~40%) ions

NMR Study of Reaction of 1⁻ with Methyllithium. To a THF solution of K^+nido -4,5-C₂B₆H₉⁻ (1⁻) in a NMR tube equipped with a rubber septum was added a slight excess of a 1.4 M Et₂O solution of CH₃Li at 0 °C. The solution was heated at 40 °C for 1 h until its ¹¹B NMR spectrum showed the formation of *arachno*-7-CH₃-C₂B₆H₉²⁻ (4²⁻), then ~1 equiv of PSH⁺Cl⁻ was added to form *arachno*-7-CH₃-4,5-C₂B₆H₁₀⁻⁻ (4⁻) as shown by ¹¹B NMR (see Supporting Information).

closo-2,3-C₂B₅H₇ (5) via Thermal Degradation. A 0.70-g (7.07 mmol) sample of *nido*-4,5-C₂B₆H₁₀ (1) was slowly passed (by keeping it at -22 °C) through a 350 °C "hot tube" reactor (a 15 in. Pyrex glass tube of 1 in. diameter) connected to a vacuum line. The condensable products were collected in a -196 °C trap, then fractionated through a 0, -45, -78, and -196 °C series of traps. According to ¹¹B NMR, the -78 °C trap contained a 5:1 mixture of *closo*-2,3-C₂B₅H₇ (5) and *closo*-1,7-C₂B₆H₈, but they could not be further separated using vacuum fractionation. Based on this ratio the estimated yield of *closo*-2,3-C₂B₅H₇ (5) was 0.33 g (3.8 mmol, 54%). The -196 °C trap contained *closo*-2,4-C₂B₅H₇ and B₂H₆. Refractionation of this material gave 0.04 g (0.47 mmol, 6.6%) of *closo*-2,4-C₂B₅H₇ in a -100 °C trap. The 0 and -45 °C traps contained small amounts of larger closo carboranes (1,6-C₂B₇H₉, 1,6-C₂B₈H₁₀, *m*-C₂B₁₀H₁₂) as shown by ¹¹B NMR and mass spectroscopy.

closo-2,3-C₂B₅H₇ (5) via Thermolysis of 2b. Dry dodecane (~15 mL) was placed in a 50-mL vacuum flask equipped with a stirbar, then 0.15 g (1.52 mmol) of *nido*-4,5-C₂B₆H₁₀ (1) and a ~5-fold excess of 2-butyne were vacuum transferred to the flask. The solution was heated at 50 °C for 1 h at which point a ¹¹B NMR spectrum showed complete formation of *nido*-7-(*cis*-2-but-2-enyl)-4,5-C₂B₆H₉ (2b). The solution was heated further at 110 °C for 1.5 h, and a ¹¹B NMR spectrum of this solution showed the presence of *closo*-2,3-C₂B₅H₇ (5) and a broad resonance (65 ppm) in the region typically found for alkyl boranes. This solution was then fractionated through a -20, -50, -78, and -196 °C series of traps. An unoptimized yield of 0.045 g (0.53 mmol, 34.9%) of *closo*-2,3-C₂B₅H₇ (5) was isolated in the -78 °C trap. Exact mass calcd for ¹²C₂¹¹B₅¹H₇ 86.1013, found 86.1011. A small amount of *closo*-1-(butenyl)-2,3-C₂B₅H₆ condensed in the -50 °C trap together with dodecane.

closo-3,1,2-(η -C₅H₅)CoC₂B₅H₇ (6) and *closo*-3,1,2-(η ⁶-C₆Me₆)-RuC₂B₅H₇ (7). In separate reactions, CH₂Cl₂ solutions of (η -C₅H₅)Co(CO)I₂ (0.684 g) and (η ⁶-C₆Me₆)₂Ru₂Cl₄ (0.342 g) were added dropwise to 1.53 and 1.02 mmol of K⁺*nido*-4,5-C₂B₆H₉⁻ (1⁻), respectively, dissolved in ~20 mL of THF. After stirring overnight, the mixtures were filtered and separated by column chromatography to give *closo*-3,1,2-(η -C₅H₃)CoC₂B₅H₇ (6) (20 mg, 6.2% yield) and *closo*-3,1,2-(η ⁶-C₆Me₆)RuC₂B₅H₇ (7) (56 mg, 20.5% yield). For the dark red-orange colored *closo*-3,1,2-(η -C₅H₃)CoC₂B₅H₇ (6): mp 124−7 °C; exact mass calcd for ¹²C₇¹¹B₅⁵⁹Co¹H₁₂ 210.0736, found 210.0742; Anal. Calcd: C, 40.20; H, 5.78. Found: C, 39.92; H, 5.70. For the yellow solid *closo*-3,1,2-(η ⁶-C₆Me₆)RuC₂B₃H₇ (7): mp 150 °C dec; exact mass calcd for ¹²C₁₄¹¹B₅¹⁰¹Ru¹H₂₅ 350.1465, found 350.1455. Anal. Calcd: C, 48.25; H, 7.23. Found: C, 47.97; H, 7.32.

NMR Study of Reaction of 5 with LiEt₃BH. To a NMR tube equipped with a Teflon stopcock was vacuum transferred ~0.1 mmol of *closo*-2,3-C₂B₅H₇ (**5**) and ~0.7 mL of THF, then via syringe an excess of a 1.0 M THF solution of LiEt₃BH was added. A ¹¹B NMR spectrum (see Supporting Information) showed complete conversion to *nido*-3,4-C₂B₅H₈⁻ (**8**⁻), as evidenced by comparison with the literature values⁹ for *nido*-3,4-Et₂C₂B₅H₆⁻ and the ab initio/IGLO calculated shifts.

Studies of Subicosahedral Adjacent-Carbon Carboranes

nido-2,3-C₂B₄H₈. A 25-mL two-neck round-bottom flask equipped with a stirbar, vacuum stopcock, and septum was charged with ~10 mL of dodecane and ~2 mL of tetramethylethylenediamine (TMEDA). Following the vacuum transfer of ~2 mmol of *closo*-2,3-C₂B₃H₇ (**5**) (measured by gas volume), the solution was brought to room temperature. A ¹¹B NMR spectrum (Table 1) then showed complete formation of a TMEDA adduct, presumably *nido*-6-(TMEDA)-3,4-C₂B₃H₇ (**9**). The solution was then maintained at ~15 °C and ~0.5 mL of degassed H₂O was added by syringe. The solution was stirred vigorously while the volatiles were continuously vacuum fractionated through -78 and -196 °C traps. After ~3 h, 0.012 g (0.154 mmol, 77.0%) of *nido*-2,3-C₂B₄H₈ had been trapped at -196 °C. The product was characterized by comparison of its spectroscopic data with literature values.¹⁰

X-ray Crystallographic Studies. Details of the collection, solution, and refinement of the crystallographic data for PSH^+2b^- and PSH^+3^- are in the Supporting Information. The structural determination of PSH^+1^- is described in the earlier communication¹¹ and in the Supporting Information.

Computational Methods. The details of the methods employed have been given elsewhere.¹² The NMR chemical shifts were calculated using the IGLO method^{13,14} employing Huzinaga Gaussian lobe functions¹⁵ with specific basic sets described previously.¹² B₂H₆ is the primary reference for the ¹¹B NMR chemical shifts and the δ values were converted to the BF₃•O(C₂H₅)₂ scale using the experimental value of δ (B₂H₆) = 16.6 ppm.¹⁶ ¹³C shifts are referenced to the experimental standard, tetramethylsilane (TMS). Because of the satisfactory agreement between the calculated and experimental values, the IGLO calculated ¹³C NMR data have been included in Table 2; however, it should be noted that previous studies^{17,18} indicate the levels of theory employed in this study may not always be suitable for the accurate calculated and available experimental ¹H NMR data have not been included because ¹H shifts currently cannot be accurately calculated.¹⁹

The GIAO-MP2 electron correlated chemical shift calculation as implemented by J. Gauss²⁰ was carried out using the ACESII program package²¹ employing the tzp Ahlrichs basis set²² for C and B, which includes one set of d polarization functions. H is described by a double- ζ basis set.

Results and Discussion

The new carborane anion *nido*-4,5- $C_2B_6H_9^-$ (1⁻) was prepared in high yields, as described in the Experimental Section,

(10) Onak, T.; Drake, R. P.; Dunks, G. B. Inorg. Chem. **1964**, *3*, 1686–1690.

- (11) Kang, S. O.; Bausch, J. W.; Carroll, P. J.; Sneddon, L. G. J. Am. Chem. Soc. **1992**, 114, 6248–6249.
- (12) Bausch, J. W.; Rizzo, R. C.; Sneddon, L. G.; Wille, A. E.; Williams, R. E. Inorg. Chem. 1996, 35, 131–135.

(13) See: Kutzelnigg, W.; Fleischer, U.; Schindler, M. In *NMR*, *Principles and Progress*; Diehl, P., Fluck, E., Günther, H., Kosfeld, R., Seelig, J., Eds.; Springer-Verlag: Berlin, 1990; Vol. 23, pp 165–262 and references therein.

(14) For examples of the IGLO method applied to boron compounds, see footnote 17 in: Diaz, M.; Jaballas, J.; Tran, D.; Lee, H.; Arias, J.; Onak, T. *Inorg. Chem.* **1996**, *35*, 4536–4540.

(15) Huzinaga, S., Gaussian Basis Sets for Molecular Calculations; Elsevier: New York, 1984.

(16) Onak, T. P.; Landesman, H.; Williams, R. E.; Shapiro, I. J. Phys. Chem. 1959, 63, 1533-1535.

(17) Bühl, M.; Schleyer, P. v. R. J. Am. Chem. Soc. 1992, 114, 477-491.

(18) (a) Bühl, M.; Gauss, J.; Hofmann, M.; Schleyer, P. v. R. J. Am. Chem. Soc. **1993**, 115, 12385–12390. (b) Schleyer, P. v. R.; Gauss, J.; Bühl, M.; Greatrex, R.; Fox, M. A. J. Chem. Soc., Chem. Commun. **1993**, 1766–1768.

(19) Bühl, M.; Schleyer, P. v. R. In *Electron Deficient Boron and Carbon Clusters*; Olah, G. A., Wade, K., Williams, R. E., Eds., Wiley: New York, 1991; Chapter 4, pp 113–142.

(20) (a) Gauss, J. Chem. Phys. Lett. **1992**, 191, 614–620. (b) Gauss, J. J. Chem. Phys. **1993**, 99, 3629–3643.

(21) ACESII: Stanton, J. F.; Gauss, J.; Watts, J. D.; Lauderdale, W. J.; Bartlett, R. J. Int. J. Quantum Chem., Quantum Chem. Symp. 1992, 26, 879–894.

(22) Schäfer, A.; Horn, H.; Ahlrichs, R. J. Chem. Phys. 1992, 97, 2571-2577.

Figure 1. Proton spin-decoupled 160.5-MHz ¹¹B NMR spectra of (a) nido-4,5-C₂B₆H₉⁻ (1⁻) and (b) nido-7-(*trans*-2-phenylethenyl)-4,5-C₂B₆H₈⁻ (2**a**⁻).

from the acetonitrile-induced cage degradation reaction of the conjugate anion of *arachno*-4,5-C₂B₇H₁₃:

arachno-4,5-C₂B₇H₁₂ + CH₃CN
$$\xrightarrow{\Delta}$$

nido-4,5-C₂B₆H₉ + 1/3 Et₃B₃N₃H₃ (1)

The cage degradation observed in this reaction is different than the reaction of CH₃CN with the isomeric *arachno*-6,8- $C_2B_7H_{12}^-$ anion, which results in the monocarbon cage insertion product *nido*-6-CH₃-5,6,9- $C_3B_7H_9^-$.²³ This difference in reactivity is probably a consequence of the fact that the 4,5-isomer contains two BH₂ groups while the 6,8-isomer has a single BH₂.²⁴ The CH₃CN appears to cause the base-induced cleavage of BH₃ from one of the BH₂ groups of the 4,5-isomer with subsequent rearrangement of the resulting CH₃CN•BH₃ adduct to 1,3,5-Et₃B₃N₃H₃.²⁵

The ¹¹B NMR spectrum of 1^- (Figure 1a) shows four doublet resonances in 2:1:2:1 ratios, indicating the presence of a cage mirror plane, with each boron containing one terminal hydrogen. The ¹H NMR spectrum of 1^- is likewise consistent with C_s cage symmetry, showing four B-H_t, one C-H, and a bridgehydrogen resonances in ratios of 2:2:2:1:1:1. The ¹³C NMR spectrum of 1^- shows a single resonance at 108.4 ppm (Table 1).

A $C_2B_6H_9^-$ carborane is an 8-vertex, 20-skeletal-electron, nido-cluster system and, on the basis of skeletal electron counting rules,²⁶ would be expected to adopt an open-cage structure based on a tricapped trigonal prism missing one highcoordinated vertex (Figure 2a). However, the only structurally characterized 8-vertex nido-cluster with this geometry is *nido*-

(25) Emeléus, H. J.; Wade, K. J. Chem. Soc. 1960, 2614-2617.

^{(23) (}a) Kang, S. O.; Furst, G. T.; Sneddon, L. G. *Inorg. Chem.* **1989**, 28, 2339–2347. (b) Kang, S. O.; Sneddon, L. G. In *Electron Deficient Boron and Carbon Clusters*; Olah, G. A., Wade, K., Williams, R. E., Eds.; Wiley: New York, 1991; pp 195–213.

⁽²⁴⁾ The structures of the *arachno*-4,5-C₂B₇H₁₂- and *arachno*-6,8-C₂B₇H₁₂⁻ anions, and a possible mechanism for the formation of *nido*-4,5-C₂B₆H₉⁻ (1⁻), will be discussed in a subsequent paper. Bausch, J. W., Sneddon, L. G., unpublished results.

 Table 1.
 NMR Data

compd	nucleus	δ (multiplicity, assignment, <i>J</i> (Hz))		
$nido-4.5-C_2B_6H_9^{-}(1^{-})$	${}^{11}\mathbf{B}^a$	5.0 (d, B7,8, J_{BH} 135), -15.0 (d, B2, J_{BH} 129), -16.8 (d, B3,6, J_{BH} 124), -36.1		
, _ , , , ,		(d, B1, <i>J</i> _{BH} 157, <i>J</i> _{BB} 20)		
	${}^{11}B - {}^{11}B^b$	crosspeaks: B7,8-B2; B7,8-B3,6; B2-B1; B2-B3,6		
	${}^{1}H{}^{11}B{}^{c}$	5.5 (C4,5H), 3.9 (B7,8H), 2.1 (B3,6H), 0.8 (B2H), -0.3 (B1H), -6.3 (BHB)		
	$^{13}C^d$	108.4 (br, C4,5)		
$nido-4,5-C_2B_6H_{10}(1)$	$^{11}\mathbf{B}^{e}$	7.8 (br, B7,8), -7.3 (d, B1, J_{BH} 176), -12.4 (d, B3,6, J_{BH} 143), -26.6 (d, B2, J_{BH} 146)		
	${}^{11}B - {}^{11}B^{f}$	crosspeaks: B7,8-B3,6; B7,8-B2; B1-B3,6; B1-B2; B3,6-B2		
	${}^{1}\text{H}({}^{11}\text{B})^{g}$ ${}^{13}\text{C}^{h}$	6.2 (C4,5H), 3.0 (m, B7,8H), 2.6 (B3,6H), 2.0 (B1H), 1.2 (B2H), -3.4 (br, BHB) 120.0 (br, C4,5)		
<i>nido</i> -7-(<i>trans</i> -2-phenylethenyl)- $4.5-C_2B_6H_8^-$ (2a ⁻)	${}^{11}\mathrm{B}^i$	15.5 (br, B7), 3.2 (d, B8, J_{BH} 142), -12.1 (d, B2, J_{BH} 131), -13.7 (d, B6, J_{BH} 125), -15.5 (d, B3, J_{BH} 122), -34.1 (d, B1, J_{BH} 151)		
	${}^{1}\mathrm{H}\{{}^{11}\mathrm{B}\}^{j,k}$	7.5–7.0 (Ph, =C–H), 6.6 (d, =C–H, $J_{\rm HH}$ 18), 5.7 (CH), 5.65 (CH), 3.6 (BH), 2.0 (BH), 1.9 (BH), 1.2 (BH), -0.3 (BH), -4.8 (B–H–B)		
nido-7-(cis-2-but-2-envl)-	${}^{11}\mathbf{B}^{l}$	$17.2 (B7), -1.0 (br, B8), -13.4 (d, B2, J_{BH} 146), -15.8 (d, B6, J_{BH} 156),$		
$4,5-C_2B_6H_8^{-}(2b^{-})$		-17.8 (d, B3, J_{BHH} 141), -36.4 (d, B1, J_{BH} 143)		
$nido-7-(n-hexyl)-4,5-C_2B_6H_8^-$ (2c ⁻)	${}^{11}\mathbf{B}^l$	19.1 (br, B7), -1.3 (br, B8), -13.0 (d, B2, J_{BH} 153), -15.7 (d, B6, J_{BH} 161),		
• • • • • • •		-18.1 (d, B3, J_{BH} 139), -36.3 (d, B1, J_{BH} 140)		
nido-7-(trans-2-phenylethenyl)-	${}^{11}\mathbf{B}^m$	40.2 (br, B7), -8.4 (d, B6, J_{BH} 141), -13.3 (d, B1, $J_{BH} \approx 130$),		
$4,5-C_2B_6H_9$ (2a)		-16.9 (d, B3, J_{BH} 156), -23.0 (d, B8, $J_{BH} \approx 160$), -25.3 (d, B2, J_{BH} 145)		
$nido-7-(cis-2-but-2-enyl)-4,5-C_2B_6H_9$ (2b)	$^{11}\mathbf{B}^n$	43.8 (s, B7), -8.2 (d, B6, J_{BH} 140), -13.7 (d, B1, J_{BH} 176), -16.6 (d, B3, J_{BH} 154), -23.3 (d, B8, J_{BH} 153), -24.7 (d, B2, J_{BH} 144)		
	${}^{11}B - {}^{11}B^{o}$	crosspeaks: B1-B2; B1-B3; B1-B6; B2-B3; B2-B6; B2-B8; B3-B8; B6-B7		
$nido-7-(n-hexyl)-4,5-C_2B_6H_9$ (2c)	${}^{11}\mathrm{B}^p$	49.2 (s, B7), -6.4 (d, B6, J_{BH} 138), -11.7 (d, B1, J_{BH} 181), -16.3 (d, B3, J_{BH} 142), -21.4 (d, B8, J_{BH} 176), -24.2 (d, B2, J_{BH} 158)		
nido-7-(octyl)-4,5-C ₂ B ₆ H ₉ (2d)	$^{11}\mathbf{B}^q$	49.2 (s, B7), -6.4 (d, B6, J_{BH} 142), -12.0 (d, B1, J_{BH} 182), -16.4 (d, B3, J_{BH} 147), -21.4 (d, B8, J_{BH} 156), -24.4 (d, B2, J_{BH} 154)		
$arachno-5,6-C_2B_7H_{12}^{-}(3^{-})$	${}^{11}\mathrm{B}^r$	-1.4 (d, B1, J_{BH} 126), -7.7 (t, B9, J_{BH} 115), -9.6 (d, B4,7, J_{BH} 129), -43.5 (d, B3.8 J_{WI} 118) -447 (d, B2 J_{WI} 157)		
	${}^{11}B - {}^{11}B^{s}$	$(a, b5, b, b_{BH}, 110), -44.7 (a, b2, b_{BH}, 157)$ crossneaks: B1-B2: B1-B3 & B1-B4 7: B3 8-B4 7		
	${}^{1}\mathrm{H}\{{}^{11}\mathrm{B}\}{}^{t}$	5.5 (C5,6H), 2.5 (B4,7H), 2.3 (m, <i>exo</i> -B9H, br), 2.1 (s, B1H), 0.7 (t, <i>endo</i> -B9H, $J_{\rm HH}$ 6), 0.1 (92.8H) = 0.7 (P2H) = 1.4 (PHP)		
	13 C ^u	116.2 (hr (C5.6))		
arachno-7-CH ₃ -4,5-C ₂ B ₆ H ₁₀ ⁻ (4 ⁻)	$^{11}B^{\nu}$	$6.6 (d, B6, J_{BH} 128), 3.4 (d, B3, J_{BH} 146), -20.2 (d, B2, J_{BH} 141), -31.6 (d, B7, J_{BH} 99), -37.9 (t, B8, J_{W} 107), -57.7 (d, B1, J_{W} 170)$		
	$11 R - 11 R^{W}$	crossneaks: B1-B2: B1-B3: B1-B6: B2-B3: B2-B6: B2-B7: B2-B8: B3-B8: B6-B7		
arachno-7-CH ₃ -4,5-C ₂ B ₆ H ₉ ²⁻ (4 ²⁻)	$^{11}\mathbf{B}^x$	-3.0 (br, B6), -9.6 (br, overlap, B2,B3), -31.5 (br, B7), -45.3 (t, B8, $J_{BH} \approx 90$), -58.9 (d, B1, $J_{PH} \approx 120$)		
closo-2.3-C ₂ B ₅ H ₇ (5)	${}^{11}\mathbf{B}^{e}$	$69 (d, B4, 6, J_{BH}, 172), 31 (d, B5, J_{BH}, 157), -17.9 (d, B1.7, J_{BH}, 176)$		
	${}^{1}H{{}^{11}B}^{y}$	6.9 (C2,3H), 4.4 (B4,6H), 3.9 (B5H), -0.1 (B1,7H)		
1 (here and) 2.2 C D H	11000	93.8 (br, C2,3)		
$closo-1$ -(butenyl)-2,3- $C_2B_5H_6$	11Df	0.9 (d, B4,0, J_{BH} 134), 2.9 (d, B5, J_{BH} 160), -0.8 (s, B1), -25.0 (d, B7, J_{BH} 180)		
closo-5, 1, 2-CpCoC ₂ B ₅ H ₇ (0)	1 11 (11 D) <i>bb</i>	$0/.2$ (d, J_{BH} 150), 16.2 (d, J_{BH} 100), -1.5 (d, J_{BH} 177), -6.2 (d, J_{BH} 155) 0/.4 (DU) $6/.4$ (CU) $5/.4$ (CU) $1/.4$ (DU) $2/.6$ (DU) 0.7 (DU)		
	¹³ C ^{cc}	2.4 (D11), 0.4 (C11), 3.3 (C5115), 4.3 (D11), 2.0 (D11), 0.7 (D1)86.1 (C-Hz) 66.8 (cone C br)		
$closo=3.1.2$ - $(n^6$ -C ₂ Me ₂)RuC ₂ R ₂ H ₇ (7)	11 B f	57.7 (d 148) 13.7 (d 153) - 2.6 (d 172) - 11.8 (d 134)		
$C_{0000} = 0.1, 2 (\eta - C_{01000}) (\alpha - C_{20011} (\eta - 1))$	¹ H ^{bb}	74 (BH) 5.1 (CH) 4.2 (BH) 2.7 (BH) 0.5 (BH) (one neak obscured)		
	$^{13}C^{cc}$	102.6 (s. Me ₆ C ₆), 60.4 (br. cage C), 17.4 (s. Me ₆ C ₆)		
$nido-3.4-C_{2}B_{5}H_{8}^{-}$ (8 ⁻)	${}^{11}\mathbf{B}^x$	21.4 (d, B2, J_{BH} 128), 18.9 (t, B6, J_{BH} 116), 1.1 (d, B5,7, J_{BH} 110), -34.0 (d, B1, J_{BH} 158)		
nido-6-(TMEDA)-3,4-C ₂ B ₅ H ₇ (9)	$^{11}B^o$	19.6 (d, B2, J_{BH} 132), 15.7 (d, B6, J_{BH} 139), 4.5 (d, B5,7, J_{BH} 136), -31.7 (d, B1, J_{BH} 169)		

^{*a*} 160.5 MHz in THF-*d*₈ (K⁺ salt). ^{*b*} 64.2 MHz in THF-*d*₈ (K⁺ salt). ^{*c*} 500 MHz in THF-*d*₈ (K⁺ salt). ^{*d*} 50.3 MHz in THF-*d*₈ (K⁺ salt). ^{*e*} 160.5 MHz in CD₂Cl₂. ^{*f*} 64.2 MHz in CD₂Cl₂. ^{*g*} 200 MHz in C₆D₆. ^{*h*} 50.3 MHz in C₆D₆. ^{*i*} 160.5 MHz in CD₃CN (PSH⁺ salt). ^{*j*} 500 MHz in CD₃CN (PSH⁺ salt). ^{*i*} 500 MHz in CD₃CN (PSH⁺ salt). ^{*i*} 64.2 MHz in cluded. ^{*l*} 64.2 MHz in CH₂Cl₂ (PSH⁺). ^{*m*} 64.2 MHz decane. ^{*n*} 160.5 MHz in C₆D₆. ^{*o*} 64.2 MHz in CD₆Cl₂. ^{*b*} 64.2 MHz in cD₂Cl₂ (Bu₄N⁺ salt). ^{*i*} 200 MHz in CD₂Cl₂ (Bu₄N⁺ salt). ^{*i*} 200 MHz in CD₂Cl₂ (Bu₄N⁺ salt). ^{*i*} 200 MHz in CD₂Cl₂ (Bu₄N⁺ salt). ^{*i*} 500 MHz in CD₂Cl₂ (Bu₄N⁺ salt). ^{*i*} 125.7 MHz in CD₂Cl₂ (Bu₄N⁺ salt). ^{*i*} 64.2 MHz in CD₃CN. ^{*w*} 64.2 MHz in CD₂Cl₂. ^{*i*} 125.7 MHz in C₆D₆. ^{*a*} 64.2 MHz in dodecane. ^{*b*} 200 MHz in CD₃CN. ^{*c*} 125.7 MHz in CD₃CN.

 $(\eta$ -C₅H₅)₂Co₂SB₅H₇.²⁷ Other crystallographically characterized isoelectronic clusters, such as *nido*-B₈H₁₂,²⁸ *nido*-(η ⁶-C₆Me₆)-FeMe₄C₄B₃H₃,²⁹ and *nido*-(η -C₅H₅)CoPh₄C₄B₃H₃,³⁰ have structures based on a 10-vertex bicapped square antiprism missing

(29) Micciche, R. P.; Briguglio, J. J.; Sneddon, L. G. Organometallics **1984**, *3*, 1396–1402.

(30) Zimmerman, G. J.; Sneddon, L. G. Inorg. Chem. 1980, 19, 3650-3655.

two vertices, which is the same geometry expected for 8-vertex arachno-clusters (Figure 2b). Thus, the question of which is the preferred geometry for 8-vertex nido cages has been a longstanding problem in cluster chemistry.^{26,f,31,32}

We previously communicated¹¹ a single-crystal X-ray study of Bu₄N⁺*nido*-4,5-C₂B₆H₉⁻ (1⁻) (Figure 3 and Supporting Information) that confirmed the gross arachno-type structure and this report was the first structural confirmation of this geometry for a non-metal polyhedral cage system. The C_s cage symmetry observed in the solid state is also consistent with the NMR data discussed above. The carbon atoms occupy adjacent

^{(26) (}a) Williams, R. E. Inorg. Chem. **1971**, 10, 210–214. (b) Wade, K. Adv. Inorg. Chem. Radiochem. **1976**, 18, 1–66. (c) Williams, R. E. Adv. Inorg. Chem. Radiochem. **1976**, 18, 67–142. (d) Rudolph, R. W. Acc. Chem. Res. **1976**, 9, 446–452. (e) Williams, R. E. In Electron Deficient Boron and Carbon Clusters; Olah, G. A., Wade, K., Williams, R. E., Eds.; Wiley: New York, 1991; pp 11–93. (f) Williams, R. E. Chem. Rev. **1992**, 92, 177–207.

⁽²⁷⁾ Zimmerman, G. J.; Sneddon, L. G. J. Am. Chem. Soc. 1981, 103, 1102–1111.

⁽²⁸⁾ Enrione, R. E.; Boer, F. P.; Lipscomb, W. N. Inorg. Chem. 1964, 3, 1659–1666.

^{(31) (}a) Grimes, R. N. *Adv. Inorg. Chem. Radiochem.* **1983**, *26*, p 72. (b) Reference 1d, p 473.

⁽³²⁾ Studies of 8-vertex nido electron count carborane clusters have indicated that the 6-membered open-face geometry is usually, but not always, the preferred structure: J. W. Bausch, presentation at Loker Hydrocarbon Institute Kimbrough Symposium, Los Angeles, CA, December, 1995.

Figure 2. Derivation of open 8-vertex cage frameworks based upon geometrical systematics: (a) removal of a high-coordinated vertex from a 9-vertex tricapped trigonal prism to generate a 5-membered open-face nido geometry; (b) removal of two high-coordinated vertices from a 10-vertex bicapped square antiprism to generate a 6-membered open-face arachno geometry.

positions on the puckered 6-membered open face with the single bridge-hydrogen located at the B7–B8 edge. The 6-membered open-face geometry of 1^- is clearly demonstated by the C4–B8 distance of 2.72 Å, and the remaining cage lengths (Figure 3 caption) are within values normally found in carboranes.

The ab initio calculated structure for *nido*-4,5-C₂B₆H₉⁻ (1⁻) (Supporting Information) and the IGLO calculated shifts and assignments³³ (Table 2) are likewise consistent with the crystallographically observed structure and both the experimental ¹¹B NMR chemical shifts and 2D ¹¹B⁻¹¹B NMR spectrum. A variety of input structures containing a 5-membered open face were employed in the calculations, but each optimized to the structure with a 6-membered open face (the C4–B8 distance is calculated to be 2.74 Å at the MP2/6-31G* level of theory).

Onak has recently reported³⁴ an isomer of 1^- , *nido*-3,5-C₂B₆H₉⁻, and shown with ab initio/IGLO calculations that it also has an arachno-type structure, but with the carbons located in non-adjacent positions on the 6-membered open face. The 3,5-isomer is energetically favored over 1^- by 4.5 kcal/mol (Table 3), which agrees with the empirical rules of Williams.^{26e}

The neutral carborane *nido*-4,5- $C_2B_6H_{10}$ (1) was obtained in 70% optimized yield by protonation of a pentane suspension of 1^- with gaseous HCl at -78 °C to give a colorless, airsensitive liquid that slowly decomposes at room temperature.

$$K^+$$
nido-4,5-C₂B₆H₉⁻ + HCl $\xrightarrow{\text{pentane}}$ nido-4,5-C₂B₆H₁₀ + KCl (2)
1⁻ -78 °C 1

Although the ¹¹B (Figure 4a), ¹H, ¹³C, and 2-D ¹¹B – ¹¹B NMR spectra (Table 1) of *nido*-4,5-C₂B₆H₁₀ (1) suggest C_s symmetry, the ab initio/IGLO calculations for a C_s symmetry isomer (1b) showed poor agreement with the experimental data (Figure 5). Williams' empirical rules^{26e} do not favor structure 1b as it contains two bridge-hydrogens across 5-coordinated borons (B3,6). Instead, an asymmetrical arrangement of bridgehydrogens (1a) would be favored. The calculations indeed show 1a to be significantly lower in energy (28.3 kcal/mol) than 1b

Figure 3. ORTEP drawing of the cage structure of Bu_4N^+nido -4,5- $C_2B_6H_9^-$ (1⁻). Selected observed bond distances (Å): B1-B2, 1.749 (7); B1-B3, 1.794 (7); B1-C4, 1.687 (7); B1-C5, 1.686 (6); B1-B6, 1.805 (7); B2-B3, 1.792 (7); B2-B6, 1.833 (7); B2-B7, 1.715 (6); B2-B8, 1.710 (7); B3-C4, 1.566 (7); B3-B8, 1.699 (7); C4-C5, 1.400 (7); C5-B6, 1.562 (7); B6-B7, 1.709 (7); B7-B8, 1.666 (7); B7-H78, 1.219 (35); B8-H78, 1.294 (35).

Figure 4. Proton spin-decoupled 64.2 MHz ¹¹B NMR spectra of (a) *nido*-4,5-C₂B₆H₁₀ (1); (b) *nido*-7-(*cis*-2-but-2-enyl)-4,5-C₂B₆H₉ (2b); and (c) *nido*-7-(octyl)-4,5-C₂B₆H₉ (2d). Complete shift assignments are given in Table 1.

(Table 3). Good agreement of the IGLO calculated ¹¹B NMR shifts of **1a** with the experimental values is obtained by averaging the shifts of the "static" structure to give the "dynamic" values (Figure 5). A fluxional process which would interconvert the two enantiomers shown below could involve rapid bridge-proton rearrangements across the B3–B8, B7–B8, and B6–B7 edges. This would account for both the apparent mirror plane of symmetry present in the NMR spectra of **1** and the broad nature of the B7–B8 resonance.

This rearrangement appears to have a low-energy barrier, as

⁽³³⁾ The value for B2 deviates 8 ppm from the experimental value. This larger than normal difference may arise because the computational method does not take into account solvation and counterion effects, which could be significant in these anions.

⁽³⁴⁾ Onak, T.; Tseng, J.; Tran, D.; Herrera, S.; Chan, B.; Arias, J.; Diaz, M. Inorg. Chem. **1992**, *31*, 3910–3913.

 Table 2.
 IGLO Data

optimized structure	IGLO calculated NMR data (II'/MP2/6-31G*)				
$nido-4,5-C_2B_6H_9^-(1^-)$	¹¹ B: 7.1 (B7,8), -7.2 (B2), -19.5 (B3,6), -37.8 (B1) ¹³ C: 112.0 (C3.4)				
$nido-4,5-C_2B_6H_{10}(1a)$	¹¹ B: 37.3 (B8), -6.8 (B1), -9.8 (B3), -13.1 (B7), -19.1 (B6), -22.9 (B2) ¹³ C: 160.4 (C4), 94.4 (C5)				
$nido-4,5-C_2B_6H_{10}$ (1b)	¹¹ B: 34.4 (B1), 25.7 (B7,8), -2.5 (B3,6), -22.3 (B2) ¹³ C: 139.7 (C4.5)				
$nido-7-CH_3-4,5-C_2B_6H_8^-$ (2e ⁻)	¹¹ B: 16.9 (B7), 4.0 (B8), -5.0 (B2), -18.4 (B6), -21.0 (B3), -37.8 (B1) ¹³ C: 114.2 (C5), 110.5 (C4), -0.9 (Me)				
<i>nido</i> -7-CH ₃ -4,5-C ₂ B ₆ H ₉ (2e)	¹¹ B: 50.6 (B7), -7.6 (B1), -8.7 (B6), -16.8 (B8), -19.2 (B3), -21.6 (B2) ¹³ C: 159.6 (C5), 91.0 (C4), 1.3 (Me)				
nido-8-CH ₃ -4,5-C ₂ B ₆ H ₉ (2f)	¹¹ B: 34.9 (B7), -0.9 (B8), -1.0 (B1), -11.7 (B6), -19.0 (B3), -20.3 (B2) ¹³ C: 162.4 (C4), 96.1 (C5), -8.3 (Me)				
$arachno-5, 6-C_2B_7H_{12}^-$ (3 ⁻)	¹¹ B: 2.0 (B1), -8.2 (B9), -8.8 (B4,7), -44.8 (B3,8), -48.5 (B2) ¹³ C: 114.2 (C5.6)				
$arachno-5, 6-C_2B_7H_{13}$ (3a)	¹¹ B: 30.9 (B7), 28.1 (B4), 20.6 (B9), 17.1 (B8), -12.7 (B1), -17.1 (B2), -21.1 (B3) ¹³ C: 109.7 (C6), 11.7 (C5)				
$arachno-5, 6-C_2B_7H_{13}$ (3b)	¹¹ B: 15.4 (B1), -3.2 (B2), -8.6 (B9), -9.0 (B7), -18.5 (B8), -29.7 (B3), -30.1 (B4) ¹³ C: 150.4 (C6), 125.8 (C5)				
<i>arachno</i> -7-CH ₃ -4,5-C ₂ B ₆ H ₉ ²⁻ (4 ²⁻)	¹¹ B: -3.1 (B6), -4.4 (B2), -7.4 (B3), -35.6 (B7), -45.5 (B8), -62.0 (B1) ¹³ C: 96.0 (C5), 92.9 (C4), 8.9 (Me)				
$arachno-7-CH_{3}-4,5-C_{2}B_{6}H_{10}^{-}(4^{-})$	¹¹ B: 9.6 (B6), 6.8 (B3), -21.2 (B2), -30.5 (B7), -36.4 (B8), -59.5 (B1) ¹³ C: 92.7 (C5), 91.8 (C4), 2.5 (Me)				
$closo-2,3-C_2B_5H_7$ (5)	¹¹ B: 8.1 (B4,6), 1.0 (B5), -17.5 (B1,7) ¹³ C: 87.0 (C2.3)				
<i>closo</i> -1-CH ₃ -2,3-C ₂ B ₅ H ₆	¹¹ B: 9.0 (B4,6), -0.4 (B5), -7.0 (B1), -23.9 (B7) ¹³ C: 87.2 (C2.3), -8.6 (Me)				
$nido-3,4-C_2B_5H_8^-$ (8 ⁻)	¹¹ B: 23.5 (B2), 22.7 (B6), 3.2 (B5,7), -36.6 (B1) ¹³ C: 109.3 (C3.4)				
nido-6-NH ₃ -3,4-C ₂ B ₅ H ₇	¹¹ B: 25.2 (B2), 9.8 (B6), 0.1 (B5,7), -30.9 (B1) ¹³ C: 125.8 (C3,4)				

¹¹B and ¹H NMR studies of **1** to -90 °C were unable to sufficiently slow down this process to allow observation of a static asymmetrical structure.

The NMR spectra for the carbons-apart isomer, *nido*-3,6- $C_2B_6H_{10}$,^{35,36} of **1** were originally interpreted as consistent with either static-arachno or fluxional-nido structures. However, an ab initio/IGLO/NMR study³⁷ strongly favors a static structure. The 3,6-isomer is energetically favored by 22.5 kcal/mol over **1** (Table 3).

The *nido*-4,5- $C_2B_6H_{10}$ (1) was found³⁸ to readily hydroborate under mild conditions a variety of alkynes and alkenes, including phenyl acetylene, 2-butyne, 1-hexene, and octenes, to give exopolyhedral alkenyl or alkyl B7-substituted *nido*- $C_2B_6H_9$ (**2a**– **d**) species:

The ¹¹B NMR spectra for $2\mathbf{a}-\mathbf{d}$ (see Figure 4 for spectra of $2\mathbf{b}$ and $2\mathbf{d}$) contain resonances at chemical shifts expected for a "static" *nido*-4,5-C₂B₆H₁₀ (Figure 5), with five doublets and one downfield singlet of equal intensity. The chemical shifts of the

(35) Gotcher, A. J.; Ditter, J. F.; Williams, R. E. J. Am. Chem. Soc. 1973, 95, 7514-6.

(37) Bausch, J. W.; Prakash, G. K. S.; Bühl, M.; Schleyer, P. v. R.; Williams, R. E. Inorg. Chem. **1992**, *31*, 3060–3062.

(38) Presented in part at the Eighth International Meeting of Boron Chemistry, Knoxville, TN, July, 1993. See: Bausch, J. W.; Carroll, P. J.; Sneddon, L. G. In *Current Topics in the Chemistry of Boron*; Kabalka, G. W., Ed.; Royal Society of Chemistry: Cambridge, 1994; pp 224–227.

substituted B7 borons are sensitive to their exopolyhedral substituents, with those of the olefinic derivatives, **2a** and **2b**, coming at slightly higher field (40.2 and 43.8 ppm) than those of the saturated derivatives, **2c** and **2d** (49.2 and 49.2 ppm). The IGLO calculated ¹¹B shifts for the model compound *nido*-7-CH₃-4,5-C₂B₆H₉ (**2e**, Figure 6) correlate well with the experimental data for **2a**–**d**. Other structures also having the C_1 symmetry which were not excluded by the experimental data were also computationally investigated. The *nido*-8-CH₃-4,5-C₂B₆H₉ (**2f**) isomer is calculated to be only 2.2 kcal/mol higher in energy than the 7-Me isomer **2e** (Table 3). However, the IGLO ¹¹B calculated shifts (Table 2) for **2f** correlate poorly with the experimental values for **2a**–**d**.

As discussed above, the ab initio/IGLO calculations and their experimental ¹¹B NMR spectra are consistent with the structures proposed for $2\mathbf{a}-\mathbf{d}$, but the compounds proved to be too thermally unstable to allow complete isolation and characterization. However, treatment of $2\mathbf{a}-\mathbf{c}$ with Proton Sponge resulted in deprotonation to form stable alkyl or alkenyl B7-substituted *nido*-4,5-C₂B₆H₈⁻ ions ($2\mathbf{a}-\mathbf{c}^-$) in moderate to high yields:

For example, PSH⁺*nido*-7-(*trans*-2-phenylethenyl)-4,5-C₂B₆H₈⁻ (**2a**⁻) was isolated in 81% yield after treatment of **2a** with Proton Sponge. The ¹¹B NMR spectra (Table 1) for **2a**⁻-**c**⁻ are similar, with each containing one singlet and five doublet resonances in equal ratios, indicating C_1 cage symmetry (see Figure 1b for the spectrum of **2a**⁻). The resonances also occur

⁽³⁶⁾ Reilly, T. J.; Burg, A. B. Inorg. Chem. 1974, 12, 1250.

Table 3. Absolute (-au) and Relative (kcal/mol) Energies of Carboranes Calculated in This Study

optimized structure	sym	6-31G*//6-31G*	ZPE $(NEV)^a$	$E_{\rm rel}{}^b$	MP2/6-31G*//MP2/6-31G*	$E_{\rm rel}^{c}$
$nido-4,5-C_2B_6H_9^-(1^-)$	$C_s \\ C_1$	229.06624	81.58 (0)	9.5	229.93727	4.5
$nido-3,5-C_2B_6H_9^-$		229.08139	81.54 (0)	0.0	229.94434	0.0
$nido-4,5-C_2B_6H_{10}$ (1a)	$egin{array}{cc} C_1 \ C_s \ C_{2 v} \end{array}$	229.58307	89.58 (0)	33.3	230.45050	22.5
$nido-4,5-C_2B_6H_{10}$ (1b)		229.54192	88.31 (0)	56.0	230.40348	50.8
$nido-3,6-C_2B_6H_{10}^d$		229.63438	90.58 (0)	0.0	230.48772	0.0
$nido-7-CH_{3}-4,5-C_{2}B_{6}H_{8}^{-}$ (2e ⁻)	C_1	268.10894	100.54 (0)		269.11481	
<i>nido</i> -7-CH ₃ -4,5-C ₂ B ₆ H ₉ (2e)	$C_1 \\ C_1$	268.62980	108.50 (0)	0.0	269.63637	0.0
<i>nido</i> -8-CH ₃ -4,5-C ₂ B ₆ H ₉ (2f)		268.62760	108.66 (0)	1.5	269.63304	2.2
<i>arachno</i> -5,6- $C_2B_7H_{12}^-$ (3 ⁻)	C_s	255.47820	103.43 (0)		256.46771	
arachno-5,6-C ₂ B ₇ H ₁₃ (3a)	$egin{array}{c} C_1 \ C_1 \ C_1 \end{array}$	255.97924	112.58 (0)	15.9	256.95331	20.7
arachno-5,6-C ₂ B ₇ H ₁₃ (3b)		255.95692	111.32 (0)	28.7	256.94044	27.7
arachno-4,5-C ₂ B ₇ H ₁₃		256.00663	114.08 (0)	0.0	256.98849	0.0
arachno-7-CH ₃ -4,5-C ₂ B ₆ H ₃ ²⁻ (4^{2-}) arachno-7-CH ₃ -4,5-C ₂ B ₆ H ₁₀ ⁻ (4^{-}) closo-2,3-C ₂ B ₅ H ₇ (5) closo-1-CH ₃ -2,3-C ₂ B ₅ H ₆ nido-3,4-C ₂ B ₅ H ₈ ⁻ (8^{-}) nido-6-NH ₃ -3,4-C ₂ B ₅ H ₇	$C_1 \\ C_1 \\ C_{2\nu} \\ C_s \\ C_s \\ C_s \\ C_s$	268.51614 269.25029 203.21493 242.26088 203.79929 259.39771	103.67 (0) 113.51 (0) 67.24 (0) 86.04 (0) 71.92 (0) 94.70 (0)		269.54414 270.26844 203.95708 243.14204 204.56006 260.32430	

^{*a*} Zero-point energy and number of imaginary frequencies in parentheses. ^{*b*} Relative energy at the $6-31G^*//6-31G^* + ZPE$ ($6-31G^*$) level; the zero-point energies have been scaled by 0.89 as recommended.¹³ ^{*c*} Relative energy at the MP2/ $6-31G^*//MP2/6-31G^* + ZPE$ ($6-31G^*$) level; the zero-point energies have been scaled by 0.89 as recommended.¹³ ^{*d*} Reference 35.

 $nido-4,5-C_2B_6H_{10}$ (1b)

Figure 5. Calculated structures and IGLO ¹¹B NMR data for *nido*-4,5-C₂B₆H₁₀ (1): MP2(FULL)/6-31G* optimized geometries for the asymmetric (**1a**) and symmetric (**1b**) isomers and comparison with the experimental data.

at shifts similar to those of *nido*-4,5-C₂B₆H₉⁻ (**1**⁻) with the exception that the substituted-B7 resonances are shifted to lower field. Strong support for the proposed structures $2a^--c^-$ also comes from the good agreement (Figure 6) of the ab initio/ IGLO calculated shifts on model compound *nido*-7-CH₃-4,5-C₂B₆H₉⁻ (**2e**⁻) with the experimental data for $2a^--c^-$.

The structure of PSH^+2b^- was further confirmed by a crystallographic study, but because of the poor quality of the diffraction data, a satisfactory refinement could not be obtained. Thus, while the gross cage geometry and *syn* hydroboration of 2-butyne were confirmed, the bond distances and angles are unreliable. Details of the structural determination and an ORTEP plot of PSH^+2b^- are given in the Supporting Information.

Both *nido*-4,5-C₂B₆H₁₀ (1) and its conjugate anion, *nido*-4,5-C₂B₆H₉⁻ (1⁻), were found to be useful precursors to smaller and larger cage systems. The *nido*-4,5-C₂B₆H₉⁻ (1⁻) readily

Figure 6. (a) Calculated structure and IGLO ¹¹B NMR data for *nido*-7-CH₃-4,5-C₂B₆H₈⁻ (**2e**⁻): MP2(FULL)/6-31G* optimized geometry and comparison with the experimental data for $2\mathbf{a}^{-}-\mathbf{c}^{-}$. (b) Calculated structure and IGLO ¹¹B NMR data for *nido*-7-CH₃-4,5-C₂B₆H₉ (**2e**): MP2(FULL)/6-31G* optimized geometries and comparison with the experimental data for $2\mathbf{a}-\mathbf{c}$.

underwent cage expansion by the addition of BH_3 ·THF to a THF solution of 1^- giving the new carborane anion $K^+arachno-5,6-C_2B_7H_{12}^-$ (3^-) in essentially quantitative yield.³⁹ A $C_2B_7H_{12}^-$ carborane is a 9-vertex, 24 skeletal electron, arachno-cluster system and, on the basis of skeletal electron counting rules,²⁶ would be expected to adopt a structure based on a octadecahedron missing two vertices. Two frameworks generated using this method are shown in Figure 7: the "iso" arachno structure with a 6-membered open face, found for *iso*-B₉H₁₅,⁴⁰ and the

⁽³⁹⁾ For examples of cage expansion by the addition of BH₃ to borane anions, see: (a) Geanangel, R. A.; Shore, S. G. *J. Am. Chem. Soc.* **1967**, 89, 6771–6772. (b) Remmel, R. J.; Johnson, H. D., II; Jaworiwsky, I. S.; Shore, S. G. *J. Am. Chem. Soc.* **1975**, 97, 5395–5403. (c) Geanangel, R. A.; Johnson, H. D., II; Shore, S. G. *Inorg. Chem.* **1971**, *10*, 2363–2364. (40) (a) Dobson, J.; Keller, P. C.; Schaeffer, R. *J. Am. Chem. Soc.* **1965**, 87, 3522–3523. (b) Dobson, J.; Keller, P. C.; Schaeffer, R. *Inorg. Chem.* **1976**, 7, 399–402.

Figure 7. Derivation of 9-vertex arachno cage frameworks based upon geometrical systematics: removal of six- and five-coordinated vertices (1 and 7) from an octadecahedron to generate a 7-membered open-face "normal" arachno structure and removal of six- and four-coordinated vertices (1 and 2) to generate the 6-membered open-face "iso" arachno structure.

Figure 8. ORTEP drawing of the cage structure of $(PSH)^+arachno-5,6-C_2B_7H_{12}^-$ (**3**⁻). Selected observed bond distances (Å): B1–B2, 1.678 (6); B1–B3, 1.791 (6); B1–B4, 1.776 (5); B1–B7, 1.755 (5); B1–B8, 1.767 (5); B2–B4, 1.801 (7); B2–B7, 1.764 (5); B3–B4, 1.862 (6); B3–B8, 1.747 (5); B3–B9, 1.807 (6); C5–B2, 1.698 (6); C5–B4, 1.513 (6); C5–C6, 1.430 (5); C6–B2, 1.701 (6); C6–B7, 1.520 (5); B7–B8, 1.864 (6); B8–B9, 1.815 (6); B3–H39, 1.155(28); B8–H89, 1.172 (30); B9–H39, 1.379 (23); B9–H89, 1.501 (30); B9–H9a, 1.066 (27); B9–H9b, 1.224 (25).

less common "normal" arachno structure with a 7-membered open-face, found for n-B₉H₁₅.⁴¹ The NMR data for 3^- (Table 1), which indicate C_s cage symmetry with equivalent cage carbon atoms, strongly support the "normal" arachno 9-vertex framework.

A single-crystal X-ray diffraction study of the PSH⁺3⁻ salt (Figure 8 and Supporting Information) shows that *arachno*-5,6- $C_2B_7H_{12}^-$ (3⁻) does in fact have a "normal" arachno-framework, with the carbon atoms (C5,6) occupying low-coordinated adjacent positions on the 7-membered open face. Consistent with the triplet resonance observed in the ¹¹B NMR spectrum (Table 1), the unique boron (B9) on the open face (formally from the BH₃·THF) is a BH₂ with two bridge-hydrogens, similar to that found in *n*-B₉H₁₅.⁴¹ A comparison of the geometries

Figure 9. Calculated structures and IGLO ¹¹B NMR data for *arachno*-5,6- $C_2B_7H_{13}$ (**3**): MP2(FULL)/6-31G* optimized geometries for **3a** and **3b**.

for 3^- and n-B₉H₁₅ showed that they are similar when allowances are made for the different cage lengths found in $3^$ due to the presence of the cage carbons. The ab initio calculated structure for 3^- (Supporting Information) and the IGLO calculated chemical shifts and assignments (Table 2) are likewise consistent with the crystallographically observed structure and both the experimental ¹¹B NMR chemical shifts and 2D ¹¹B-¹¹B NMR spectrum.

The **3**⁻ anion is the third isomer of this carborane anion to be reported. The two previous isomers,²⁴ arachno-4,5-C₂B₇H₁₂⁻ and arachno-6,8-C₂B₇H₁₂⁻, have structures based upon *iso*-B₉H₁₅,⁴⁰ but this new isomer arachno-5,6-C₂B₇H₁₂⁻ (**3**⁻) is the first reported carborane analog of *n*-B₉H₁₅.⁴¹ The only other reported analog of *n*-B₉H₁₅ is a ruthenaborane, arachno-(η^{6} -C₆Me₆)RuB₈H₁₄.⁴² Many attempts were made to protonate **3**⁻, with the desired product being the unknown arachno-5,6-C₂B₇H₁₃ (**3**) carborane having a *n*-B₉H₁₅ structure. In NMR tube experiments, when either the Bu₄N⁺ or PSH⁺ salt of **3**⁻ was dissolved in CH₂Cl₂ and treated with HCl·Et₂O or concentrated H₂SO₄ at -78 °C and slowly warmed to room temperature, the only identifiable product was arachno-4,5-C₂B₇H₁₃.⁴

The results of ab initio calculations indicate two possible structures for *arachno*-5,6-C₂B₇H₁₃ (**3a** and **3b**) (Figure 9) that retain the *n*-B₉H₁₅ framework, with **3a** 8.0 kcal/mol more stable than **3b** (Table 3). However, **3a** is 20.7 kcal/mol less stable than the "iso" framework isomer *arachno*-4,5-C₂B₇H₁₃.⁴³ It may be that "normal" **3a** or **3b** is initially formed by the protonation of **3**⁻, but quickly isomerizes to the more stable *arachno*-4,5-C₂B₇H₁₃ "iso" isomer. Attempts to locate computationally an isomer similar to **3a**, but with B3–B4 bridge-hydrogen moved to the B3–B9 edge, failed; this geometry optimized to isomer **3a**.

NMR studies of the reaction of sodium or potassium hydride with *nido*-4,5-C₂B₆H₁₀ (**1**) showed the formation of *nido*-4,5-C₂B₆H₉⁻ (**1**⁻). However, when LiBEt₃H was employed, the major product (~60%) was the known⁸ *arachno*-4,5-C₂B₆H₁₁⁻, arising from hydride addition to the cage, along with *nido*-4,5-C₂B₆H₉⁻ (**1**⁻) (~40%).

An NMR study of the reaction of a THF solution of K^+nido -4,5-C₂B₆H₉⁻ (1⁻) with ~1 equiv of a 1.4 M Et₂O solution of CH₃Li showed evidence of the initial formation of *arachno*-7-

⁽⁴¹⁾ Dickerson, R. E.; Wheatley, P. J.; Howell, P. A.; Lipscomb, W. N. J. Chem. Phys. **1957**, 27, 200–209.

⁽⁴²⁾ Bown, M.; Fontaine, X. L. R.; Greenwood, N. N.; Kennedy, J. D.; Thornton-Pett, M. J. Organomet. Chem. **1986**, 315, C1-C4.

⁽⁴³⁾ The optimized structure for *arachno*-4,5- $C_2B_7H_{13}$ at HF/6-31G* has been reported: McKee, M. L. *Inorg. Chem.* **1994**, *33*, 6213–6218.

Figure 10. Calculated structures and IGLO ¹¹B NMR data for *arachno*-7-CH₃-4,5-C₂B₆H₉²⁻ (4^{2-}) and *arachno*-7-CH₃-4,5-C₂B₆H₁₀²⁻ (4^{-}): MP2(FULL)/6-31G* optimized geometries and comparison with the experimental data.

CH₃-4,5-C₂B₆H₉²⁻ (4^{2-}), which following protonation with PSH⁺Cl⁻ gave *arachno*-7-CH₃-4,5-C₂B₆H₁₀⁻ (4^{-}):

The structure of the final product (4^{-}) is strongly supported by its ¹¹B NMR spectrum (Table 1), which shows six resonances (C_1 symmetry) in similar chemical shift regions as the parent *arachno*-4,5-C₂B₆H₁₁⁻. The 2-D ¹¹B-¹¹B NMR spectrum of the PPN⁺4⁻ showed the expected crosspeaks, except B7-B8. The ¹¹B NMR spectrum for the initial product (4^{2-}) contains five resonances in ratios of 1:2:1:1:1, with overlap of two peaks likely. In the proton-coupled ¹¹B NMR spectrum, the three downfield resonances are broad, but the two upfield resonances, at -37.9 and -57.7 ppm, are a triplet and a doublet, respectively (Table 1). The likely structure for 4^{2-} is similar to 4^{-} , but without the bridge-proton. The ab initio/IGLO calculations for *arachno*-7-CH₃-4,5-C₂B₆H₁₀⁻ (4^{-}) and *arachno*-7-CH₃-4,5-C₂B₆H₉²⁻ (4^{2-}) (Figure 10) are in good agreement with the experimental values.

Vacuum thermolysis of *nido*-4,5-C₂B₆H₁₀ (1), through a hot tube heated at 350 °C, resulted in loss of BH₃ and the production of *closo*-2,3-C₂B₅H₇ (5).

$$nido-4,5-C_2B_6H_{10} \xrightarrow{350 \circ C} closo-2,3-C_2B_5H_7 + 1/2 B_2H_6$$
 (7)
1 flow system 5

The *closo*-2,3-C₂B₅H₇ (**5**) was isolated in a -78 °C trap in ~65% yield. Smaller amounts of other closo carboranes (*closo*-2,4-C₂B₅H₇⁴⁴ and *closo*-1,7-C₂B₆H₈⁴⁵) were also produced, with the *closo*-1,7-C₂B₆H₈ not separable from the *closo*-2,3-C₂B₅H₇ (**5**) by vacuum fractionations. According to the integration of

Table 4. ¹¹B NMR Data for *closo*-2,3- $C_2B_5H_7$ and Alkyl Derivatives

compd	B4,6	B5	B1,7
calcd ^a for <i>closo</i> -2,3-C ₂ B ₅ H ₇	6.7	3.1	-17.4
$closo-2,3-C_{2}B_{5}H_{7}(5)$	6.9	3.1	-17.9
$closo-2,3-Me_2C_2B_5H_5^b$	10.6	5.2	-12.1
closo-2,3-Et ₂ C ₂ B ₅ H ₅ ^c	7.0	2.5	-14.2
<i>closo</i> -2,3-C ₂ B ₅ H ₇ <i>(1973)</i> ^d	-2(2)	15(1)	-25 (2)

^{*a*} GIAO-MP2 method. ^{*b*} Reference 44. ^{*c*} Reference 45. ^{*d*} Reference 46.

the ¹¹B NMR signals, the ratios of closo-2,3-C₂B₅H₇ (**5**), closo-2,4-C₂B₅H₇, and closo-1,7-C₂B₆H₈ were approximately 10:1:2.

The *closo*-2,3-C₂B₅H₇ (**5**) was also produced by moderate temperature thermolysis of solutions of the hydroborated intermediates 2a-c:

For example, thermal degradation of *nido*-7-(*cis*-2-but-2-enyl)-4,5-C₂B₆H₉ (**2b**) was accomplished by heating at 110 °C in dodecane solution. A ¹¹B NMR spectrum of this solution showed the presence of *closo*-2,3-C₂B₅H₇ (**5**), as well as a broad resonance (~65 ppm) in the range typically found for alkyl boranes, which is consistent with the loss of a "RBH₂" unit. Vacuum fractionation gave *closo*-2,3-C₂B₅H₇ (**5**) in an unoptimized yield of 34.9% in a -78 °C trap as a low-melting, volatile, air-sensitive solid and is thermally stable at room temperature. The *closo*-2,3-C₂B₅H₇ made in this way is, according to NMR and mass spectrometry, of higher purity than that produced by the gas phase flow system. By careful choice of reagents and optimization of the isolation procedure, this solution phase method may ultimately give higher yields of *closo*-2,3-C₂B₅H₇ (**5**) than the gas-phase method.

The $closo-2,3-C_2B_5H_7$ (5) carborane was one of the few remaining parent adjacent-carbon closo carboranes to be isolated and unambiguously characterized. The first alkyl substituted adjacent-carbon closo-C₂B₅- system, closo-2,3-Me₂C₂B₅H₅, was isolated in low yield by Schaeffer in 1971⁴⁶ from the gas phase reaction of octaborane and 2-butyne. Beck has reported⁴⁷ the synthesis of closo-2,3-Et₂C₂B₅H₅ and its ¹¹B NMR data are consistent with those for closo-2,3-Me₂C₂B₅H₅ (Table 4). In 1973,⁴⁸ Schaeffer also reported isolation of a small amount of impure material from the octaborane/2-butyne reaction which mass spectroscopy indicated was of the formula $C_2B_5H_7$. The ¹¹B NMR spectrum contained three resonances at 15, -2, and -25 ppm, in 1:2:2 ratios, which were tentatively assigned to closo-2,3-C₂B₅H₇. However, these resonances are significantly different (Table 4) than those of the alkyl derivatives discussed above, as well as those for compound 5. Thus, ab initio/IGLO studies were undertaken to confirm the structural assignment of **5**.

^{(44) (}a) Williams, R. E.; Good, C. D.; Shapiro, I. *Abstracts*; 140th Meeting of the American Chemical Society, Chicago, IL, Sept 1961; p 14N. (b) Onak, T. P.; Gerhart, F. J.; Williams, R. E. *J. Am. Chem. Soc.* **1963**, 85, 3378–3380.

⁽⁴⁵⁾ Williams, R. E.; Gerhart, F. J. J. Am. Chem. Soc. 1965, 87, 3513–3515.

⁽⁴⁶⁾ Rietz, R. R.; Schaeffer, R. J. Am. Chem. Soc. 1971, 93, 1263-1265.

^{(47) (}a) Beck, J. S.; Kahn, A. P.; Sneddon, L. G. *Organometallics* **1986**, 5, 2552–2553. (b) Beck, J. S.; Sneddon, L. G. *Inorg. Chem.* **1990**, *29*, 295–302.

⁽⁴⁸⁾ Rietz, R. R.; Schaeffer, R. J. Am. Chem. Soc. 1973, 95, 6254-6262.

Figure 11. Calculated structure and IGLO and GIAO-MP2 ¹¹B NMR data for *closo*-2,3-C₂B₅H₇ (**5**) together with 64.2-MHz ¹¹B NMR spectra: (a) proton spin-decoupled and (b) proton spin-coupled.

Ab initio calculations⁴⁹ show that only two isomers of $C_2B_5H_7$ are energetically favored: closo-2,3-C₂B₅H₇ and closo-2,4-C₂B₅H₇. Calculations by Schleyer et al.¹⁶ for *closo*-2,4-C₂B₅H₇ agree very well with the experimental data for that isomer. Our ab initio/IGLO calculated ¹¹B NMR shifts for closo-2,3-C₂B₅H₇ (Figure 11) of 8.1, 1.0, and -17.5 ppm are in excellent agreement with the experimental values observed for 5 of 6.9, 3.1, and -17.9 ppm, respectively.⁵⁰ GIAO-MP2 NMR chemical shift calculations⁵¹ on *closo*-2,3-C₂B₅H₇ (5) (Figure 11) likewise gave even better results (Table 4): each boron and carbon shift is within 0.5 ppm of the experimental value! On the other hand, the ¹¹B chemical shifts assigned by Schaeffer to his proposed $closo-2,3-C_{2}B_{5}H_{7}$ (15, -2, -25 ppm) correlate poorly with the IGLO and GIAO-MP2 calculated values. Thus, we conclude, based on the comparisons in Table 4, that compound 5 reported herein, and not the product reported by Schaeffer, is definitively characterized as closo-2,3-C₂B₅H₇.⁵²

In the thermal degradation of **2b**, a small amount of an additional compound was also formed, which according to the ¹¹B NMR and GC-MS data combined with ab initio/IGLO theoretical calculations is *closo*-1-(butenyl)-2,3-C₂B₅H₆. Its ¹¹B NMR spectrum indicated B1 substitution with the shifts of the observed four resonances (Table 1) in good agreement with the ab initio IGLO calculated shifts (Table 2) of the model compound *closo*-1-CH₃-2,3-C₂B₅H₆. It should also be noted

that there appears to be a significant "anti-podal" effect⁵³ of the R group at B1 upon B7, since the B7 shift (-25.0 ppm) is over 8 ppm upfield from B7 in *closo*-2,3-C₂B₅H₇ (-17.9 ppm).

The *nido*-4,5-C₂B₆H₉⁻ (1⁻) anion, like the neutral *nido*-4,5-C₂B₆H₁₀ (1), is also prone to loss of a cage boron, as exemplified by its reactions with transition metal complexes. For example, separate reactions of K⁺*nido*-4,5-C₂B₆H₉⁻ (1⁻) with CpCo-(CO)I₂ and (η^{6} -C₆Me₆)₂Ru₂Cl₄ gave *closo*-3,1,2-(η -C₅H₅)-CoC₂B₅H₇ (6) and *closo*-3,1,2-(η^{6} -C₆Me₆)₈RuC₂B₅H₇ (7), respectively.

The compositions of **6** and **7** were established by elemental analyses and exact mass measurements. Their ¹¹B NMR spectra (Table 1), which each show four doublets in 1:2:1:1 ratios, are nearly identical to those found for the previously structurally characterized *closo*-1,2-(CH₃)₂-3,1,2-(η -C₅H₅)CoC₂B₅H₅.⁵⁴

NMR studies also showed that $closo-2,3-C_2B_5H_7$ (5) readily undergoes cage expansion and degradation reactions. For example, reaction with LiEt₃BH gave *nido*-3,4-C₂B₅H₈⁻⁻ (8⁻⁻):

$$closo-2,3-C_2B_5H_7 + Li^+BEt_3H^- \longrightarrow Li^+nido-3,4-C_2B_5H_8^-$$
 (9)
5

This **8**⁻ ion is the parent derivative of the known *nido*-3,4-Et₂C₂B₅H₆⁻, made in similar fashion by cage opening of *closo*-2,3-Et₂C₂B₅H₅ with hydride ion.⁹ The ab initio optimized structure for **8**⁻ (with *C_s* symmetry, Supporting Information) contains a 5-membered open face with a BH₂ unit, similar to the crystallographically determined *nido*-3,4-Et₂C₂B₅H₆⁻.⁹ The spectrum for **8**⁻ is similar to that of *nido*-3,4-Et₂C₂B₅H₆⁻, but the B1 resonance in the Et₂ derivative appears significantly further downfield at -21.3 ppm. The ¹¹B NMR spectra and assignments (Table 1) of **8**⁻ and *nido*-3,4-Et₂C₂B₅H₆^{- 55} correlate well with the IGLO calculated results and demonstrate that ethyl substituents do indeed cause a downfield shift of the B1 resonance.

Grimes has previously shown that closo-1-M-2,3-R₂C₂B₄H₄ metallacarboranes are easily "decapitated" by treatment with wet TMEDA to give *nido*-1-M-2,3-R₂C₂B₃H₅ complexes.⁵⁶ An

⁽⁴⁹⁾ See: McKee, M. L. J. Am. Chem. Soc. 1988, 110, 5317-5321 and references therein.

⁽⁵⁰⁾ In ref 38, the figure showing the comparison of the IGLO calculated values for **5** versus the experimental values was mislabeled. The assignments for B5 and B4,6 were accidentally reversed.

⁽⁵¹⁾ For examples applied to carboranes, see ref 17.

⁽⁵²⁾ Recently, Greatrex and Fox observed that the ¹¹B NMR data reported by Grimes in 1971 for a compound believed at that time to be *closo*-C₃B₅H₇ closely matches the data reported herein for *closo*-2,3-C₂B₅H₇. See: Fox, M. A.; Greatrex, R. J. Chem. Soc., Dalton Trans. **1994**, 3197–3198. Thompson, M. L.; Grimes, R. N. J. Am. Chem. Soc. **1971**, 93, 6677–6679.

⁽⁵³⁾ Bühl, M.; Schleyer, P. v. R.; Havlas, Z.; Hnyk, D.; Heřmánek, S. *Inorg. Chem.* **1991**, *30*, 3107–3111 and references therein.

⁽⁵⁴⁾ Zimmerman, G. J.; Sneddon, L. G. Acta Crystallogr 1983, C39, 856-858.

⁽⁵⁵⁾ The II//MP2/6-31G* calculation of *nido*-3,4-Et₂C₂B₅H₆⁻ (C_s symmetry) gives ¹¹B NMR chemical shifts in satisfactory agreement with the experimental values:⁹ assignment (cald, obsd), B1 (-29.8, -21.3), B2 (21.0, 24.1), B5,7 (1.4, 4.8), B6 (20.5, 19.3). Bausch, J. W., Sneddon, L. G., unpublished results.

^{(56) (}a) Grimes, R. N. *Pure Appl. Chem.* **1991**, *63*, 369–372. (b) Grimes, R. N. In *Electron Deficient Boron and Carbon Clusters*; Olah, G. A., Wade, K., Williams, R. E., Eds., Wiley: New York, 1991; Chapter 11, pp 261–285.

analogous reaction of **4** with excess TMEDA, then H_2O , gave *nido*-2,3- $C_2B_4H_8^{10}$ in 77% yield.

When the progress of the reaction was monitored by ¹¹B NMR spectroscopy, the formation of an initial TMEDA adduct was observed. The addition of 2 electrons to the cage, provided by the TMEDA, should result in cage opening to give a nido 7-vertex structure, *nido*-6-exo-(TMEDA)-3,4-C₂B₅H₇ (**9**). In support of this proposed structure, the ¹¹B NMR spectrum (Table 1) of **9** contains four doublets in a 1:1:2:1 ratio, similar to the isoelectronic **8**⁻ ion, and the previously structurally characterized *nido*-3,4-Et₂C₂B₅H₆^{-,47b} *nido*-6-Me₃P-3,4-Et₂C₂B₅H₅,^{47b} and *nido*-6-(Me₃P⁺-CH₂)-3,4-Et₂C₂B₅H₅^{-.57} Further support for the structure of **9** comes from ab initio/IGLO calculations (Table 2) on *nido*-6-NH₃-3,4-C₂B₅H₇, which showed satisfactory agreement with the experimental values (Table 1).

In summary, simple methods for the synthesis of a variety of adjacent carbon carboranes in moderate to high yields have been developed via cage degradation and expansion reactions. Of special significance are (1) the first isolation and characterization of the parent *closo*-2,3-C₂B₅H₇ (**5**) carborane, (2) the structural confirmations of arachno-type geometries for *nido*-4,5-C₂B₆H₉⁻ (**1**⁻) and *nido*-4,5-C₂B₆H₁₀ (**1**), and (3) the synthesis and structural confirmation of the "normal" *n*-B₉H₁₅ structure for *arachno*-5,6-C₂B₇H₁₂⁻ (**3**⁻).

Acknowledgment. Dedicated to Robert E. Williams on the occasion of his 70th birthday. At the University of Pennsylvania the support of the National Science Foundation is gratefully acknowledged. We thank the Bochum group for permission to use the IGLO program.

Supporting Information Available: Details of the preparation of PSH⁺2**a**⁻, PSH⁺2**b**⁻, and PSH⁺2**c**⁻; tables listing infrared data (S1); details of structural determination of Bu₄N⁺1⁻ (S2-S7), PSH⁺2**b**⁻ (S8-S12), and PSH⁺3⁻ (S13-S18), Cartesian coordinates of the optimized geometries (S19), and comparison of calculated and experimental geometries for *nido*-3,4-Et₂C₂B₅H₆⁻ (S20); figures showing comparison of calculated and experimental geometry for **8**⁻ (S3), ORTEP for PSH⁺2**b**⁻ (S4), ¹¹B NMR spectra of *nido*-4,5-C₂B₆H₁₀ (1) with LiEt₃BH (S5), *nido*-4,5-C₂B₆H₉⁻ (1⁻) with MeLi (S6) followed by PSH⁺Cl⁻ (S7), and *closo*-2,3-C₂B₅H₇ (5) with LiEt₃BH (S8) (40 pages). See any current masthead page for ordering and Internet access instructions.

JA961112M

⁽⁵⁷⁾ Su, K.; Fazen, P. J.; Carroll, P. J.; Sneddon, L. G. Organometallics **1992**, *11*, 2715–2718.